

# ISO 12217-1:2015 NON-SAILING BOATS OF LENGTH GREATER THAN OR EQUAL TO 6m

| Manufacturer:     |  |
|-------------------|--|
| Signatory, Name:  |  |
| Signatory, Title: |  |
| Phone:            |  |
| Email:            |  |
| WWW:              |  |
| CIN Model Year:   |  |
| Model Name:       |  |

This calculation sheet is provided by IMCI "as is" and any express or implied warranties, including, but not limited to, the implied warranties of fitness for a particular purpose are disclaimed.

blue cells are derived values yellow cells require data input

> Please make sure to set your signature on the summary! (worksheet 12) either digitally or print summary, sign and attach scan

- most worksheets have additional comments / remarks / other calculations beside the printout area; please take into account.

- For boats in category A and B either fill in worksheet 6c and 6d or attach curve of righting moments for both loading conditions to the documentation.

- For boats with quick-draining cockpit the cockpit calculation according to ISO 11812 shall be enclosed to the documentation.

- Please attach other detailed information as appropriate, e.g. photos, sketches etc. for sill height, openings, companion way doors, location of flooding points, practical tests etc.



# ISO 12217-1 NON-SAILING BOATS OF LENGTH GREATER THAN OR EQUAL TO 6m CALCULATION WORKSHEET No. 1

| Design Category intended:                                           | onohull / multihull:    |                | Propul Type |                |
|---------------------------------------------------------------------|-------------------------|----------------|-------------|----------------|
| Item                                                                | Svmbo                   | Unit           | Value       | Ref.           |
| Length of hull as in ISO 8666                                       |                         | m              | Fulue       | 3.3.1          |
| Length of waterline in loaded arrival condition                     |                         | m              |             | 3.3.2          |
| Empty Craft condition mass                                          | m <sub>EC</sub>         | kg             |             | 3.4.1          |
| standard equipment                                                  |                         | kg             |             | 3.5.12         |
| water ballast in tanks which are notified in the owner's            |                         | ka             |             | 3.4.2          |
| manual to be filled when the boat is afloat                         |                         | ĸġ             |             |                |
| Light craft condition mass                                          | m <sub>LC</sub>         | kg             |             | 3.4.2          |
| Mass of:                                                            |                         |                |             |                |
| Desired crew limit                                                  | CL                      |                |             | 3.5.3          |
| Mass of:                                                            |                         |                |             |                |
| desired crew limit at 75 kg each                                    |                         | kg             |             |                |
| provisions + personal effects                                       |                         | kg             |             | 3.4.4          |
| drinking water                                                      |                         | кg             |             | 3.4.4          |
| lue riseting and budgeville sile                                    |                         | кg             |             | 3.4.4          |
| lubricating and hydraulic oils                                      |                         | kg             |             | 3.4.4          |
| diack water                                                         |                         | kg             |             | 3.4.4<br>2.4.4 |
| grey water<br>water ballast                                         |                         | kg             |             | 3.4.4          |
| other fluids carried aboard                                         |                         | kg             |             | 344            |
| stores, spare dear and cardo (if any)                               |                         | kg             |             | 344            |
| optional equipment and fittings not included in basic outfi         | t                       | ka             |             | 3.4.4          |
| inflatable life raft(s) in excess of essential safety equipme       | ent                     | ka             |             | 3.4.4          |
| other small boats carried aboard                                    |                         | kg             |             | 3.4.4          |
| margin for future additions                                         |                         | kg             |             | 3.4.4          |
| Maximum load = sum of above masses                                  | $m_{L}$                 | kg             |             | 3.4.4          |
| Maximum Load condition mass                                         | $m_{ m LDC}$            | kg             |             | 3.4.5          |
| mass to be removed for loaded arrival condition                     |                         | kg             |             | 3.4.6          |
| Loaded Arrival condition mass                                       | m <sub>LA</sub>         | kg             |             | 3.4.6          |
| Mass of:                                                            |                         |                |             |                |
| minimum number of crew according to 3.4.3                           |                         | kg             |             | 3.4.3a)        |
| non-consumable stores and equipment normally aboard                 |                         | kg             |             | 3.4.3b)        |
| inflatable life raft                                                |                         | kg             |             | 3.4.3          |
| Load to be included in Minimum Operating Condition                  | <i>m</i> ′ <sub>L</sub> | kg             |             | 3.4.3          |
| Light craft condition mass                                          | m <sub>LC</sub>         | kg             |             | 3.4.2          |
| Mass in the Minimum Operating Condition                             | m <sub>MO</sub>         | kg             |             | 3.4.3          |
| Is boat sail or non-sail?                                           |                         |                |             | 3.1.2          |
| Nominal sail area                                                   | As                      | m²             |             | 3.3.8          |
| Sail area / displacement ratio = $A_{\rm S}$ / $(m_{\rm LDC})^{23}$ |                         |                |             | 3.1.2          |
| CLASSIFIED AS [non-sail if AS / (mLDC)2/3 < 0.07]                   | SAIL/NO                 | N-SAIL ?       |             | 3.1.2          |
| NB If NON_SAIL, continue using the                                  | se worksheets, if SAIL  | , use ISO 122′ | 17-2        |                |



# ISO 12217-1 CALCULATION WORKSHEET No.2 TESTS TO BE APPLIED

|                              | Question                         | Answer | Ref.  |
|------------------------------|----------------------------------|--------|-------|
| Is boat fully enclosed?      | (see definition in ref.) YES/NO? |        | 3.1.6 |
| Is boat partially protected? | (see definition in ref.) YES/NO? |        | 3.1.7 |

| Item                                            | Symbol          | Unit | Value | Ref.  |
|-------------------------------------------------|-----------------|------|-------|-------|
| Windage area in minimum operating condition     | A <sub>LV</sub> | m²   |       | 3.3.7 |
| Length of waterline in loaded arrival condition | L <sub>wl</sub> | m    |       | 3.3.2 |
| Beam of hull                                    | B <sub>H</sub>  | m    |       | 3.3.3 |
| Freeboard ad midships                           | F <sub>M</sub>  | m    |       | 3.3.5 |
| Ratio $A_{LV}/L_{WL} B_{H}$ )                   |                 |      |       |       |

### Choose any ONE of the following options and use all the worksheets indicated for that option.

| Option           |                  | 1              | 2              | 3          | 4              | 5                      | 6              |
|------------------|------------------|----------------|----------------|------------|----------------|------------------------|----------------|
| Categories pos   | sible            | A and B        | C and D        | В          | C and D        | C and D                | C and D        |
| Decking or cov   | rering           | fully enclosed | fully enclosed | any amount | any amount     | partially<br>protected | any amount     |
| Downflooding of  | openings         | 3              | 3              | 3          | 3              | 3                      | 3              |
| downflooding a   | ingle            | 3              |                | 3          |                |                        |                |
| Downflooding     | All boats        | 3              | 3              | 3          | 3 <sup>a</sup> | 3                      | 3              |
| height test      | Annex A method   | 4              | 4              | 4          | 4 <sup>a</sup> | 4                      | 4              |
| Offset load test | t                | 5              | 5              | 5          | 5              | 5                      | 5              |
| Resistance to v  | waves + wind     | 6              |                | 6          |                |                        |                |
| Heel due to wir  | nd action        |                | 7 <sup>b</sup> |            | 7 <sup>b</sup> | 7 <sup>b</sup>         | 7 <sup>b</sup> |
| Recess size      |                  | 8              | 8 <sup>c</sup> |            |                |                        | 8 <sup>c</sup> |
| Habitable multi  | hulls            | 9              | 9              | 9          | 9              | 9                      | 9              |
| Motor sailers    |                  | 9              | 9              | 9          | 9              | 9                      | 9              |
| Flotation test   |                  |                |                | 10         | 10             |                        |                |
| Flotation mater  | ial              |                |                | 10         | 10             |                        |                |
| Detection and r  | removal of water | 11             | 11             | 11         | 11             | 11                     | 11             |
| SUMMARY          |                  | 12             | 12             | 12         | 12             | 12                     | 12             |

a. The downflooding height test is not required to be conducted on the following Category C and D boats:

I. those which, when tested in accordance with normative annex F.4, have been shown to support, in addition to the mass required by F.2 and Table F.5, an additional equivalent dry mass (kg) of (75·CL + 10% of dry weight of stores and equipment included in the maximum total load), or II. those boats that do not take on water when heeled to 90° from the upright in the light craft condition.

b. The application of Worksheet 7 is only required for boats where  $A_{LV}/(L_H B_H) > 0.5$ .

c. Only required for boats of design category C; for option 6 clause 6.5.4 only

Option selected



# ISO 12217-1 CALCULATION WORKSHEET No. 3 DOWNFLOODING

### Downflooding Openings:

| Question                                                                                | Answer | Ref.    |
|-----------------------------------------------------------------------------------------|--------|---------|
| Have all appropriate downflooding openings been identified?                             |        | 3.1.2   |
| Have potential downflooding openings within the boat been identified?                   |        | 6.1.1.4 |
| Do all closing appliances satisfy ISO 12216?                                            |        | 6.1.1.1 |
| Hatches or opening type appliances are not fitted below minimum height above waterline? |        | 6.1.1.2 |
| Seacocks comply with requirements?                                                      |        | 6.1.1.3 |
| Are all openings on design category A or B boats fitted with closing appliances?        |        | 6115    |
| (Except openings for ventilation and engine combustion)                                 |        | 0.1.1.0 |
| Categories possible: A or B if all are YES, C or D if first five are YES                |        | 6.1.1   |

# Downflooding angle (required for cat A & B only):

| Item                                                              | Symbol            | Unit            | Value | Ref.    |  |
|-------------------------------------------------------------------|-------------------|-----------------|-------|---------|--|
| Required value: (where $ø_0$ = angle from offset load test)       |                   |                 |       |         |  |
| Category A = larger of $(\emptyset O + 25)^\circ$ or $30^\circ$   | Ø <sub>D(R)</sub> | degrees         |       | Table 3 |  |
| Category B = larger of $(\emptyset O + 15)^\circ$ or $25^\circ$   | Ø <sub>D(R)</sub> | degrees         |       | Table 3 |  |
| Area of openings permitted to be submerged = $1.2L_{H}B_{H}F_{M}$ |                   | mm <sup>2</sup> |       | 6.1.3   |  |
| Actual downflooding angle: at mass = $m_{\rm MO}$                 | Ø <sub>DA</sub>   | degrees         |       | 6.1.3   |  |
| at mass = m <sub>LA</sub>                                         | Ø <sub>DA</sub>   | degrees         |       | 6.1.3   |  |
| Method used to determine Ø <sub>D:</sub>                          |                   | Annex C         |       |         |  |
| Design category possible on Downflooding An                       | gle:              |                 |       | 6.1.3   |  |

# Downflooding Height:

| Requirement                               |                          |             | Basic require-<br>ment  | Reduced<br>value for<br>small<br>openings    | Reduced<br>value at<br>outboard | Increased value at bow |                |
|-------------------------------------------|--------------------------|-------------|-------------------------|----------------------------------------------|---------------------------------|------------------------|----------------|
| Applicable to                             |                          |             | all options             | all options<br>(only if figures<br>are used) | options<br>3, 4 or 6            | options<br>3, 4, 6     |                |
| ref.                                      |                          |             | 6.1.2.2 a)              | 6.1.2.2 d)                                   | 6.1.2.2 c)                      | 6.1.2.2 b)             |                |
|                                           | ol                       | tained from | Figs. 3 + 4 or annex A? |                                              | = basic x 0.75                  | = basic x 0.80         | = basic x 1.15 |
|                                           |                          | Maximum     | area of small openings  | $(50L_{\rm H}^2) (\rm mm^2) =$               | 0                               | ///////                | //////         |
|                                           | Fig. 3/ann. A            | Category    | А                       |                                              |                                 |                        |                |
| Required                                  | Fig. 3/ann. A            | Category    | В                       |                                              |                                 |                        |                |
| $h_{\rm D(R)}$                            | Fig. 3/ann. A            | Category    | С                       |                                              |                                 |                        |                |
| ( )                                       | Fig. 4/ann. A Category D |             |                         |                                              |                                 |                        |                |
| Actual Downflooding Height h <sub>D</sub> |                          |             |                         |                                              |                                 |                        |                |
| Design Category possibl                   |                          |             |                         |                                              |                                 |                        |                |
|                                           | Design Catego            | ry possible | on Downflooding Heigh   | t = lowest of abov                           | /e                              |                        |                |



# ISO 12217-1 CALCULATION WORKSHEET No.4 DOWNFLOODING HEIGHT

# Calculation using annex A

| Item                                                                                           |                                                     | Symbol                  | Unit            | Opening<br>1 | Opening<br>2 | Opening<br>3 | Opening<br>4 |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|-----------------|--------------|--------------|--------------|--------------|
| Position of openings                                                                           |                                                     |                         |                 |              |              |              |              |
| Least longitudinal distance from bo                                                            | w/stern                                             | x                       | m               |              |              |              |              |
| Least travers distance from gunwa                                                              | le                                                  | У                       | m               |              |              |              |              |
| $F_1$ = greater of (1 - $x/L_H$ ) or (1 - $y/L_H$ )                                            | B <sub>H</sub> )                                    | F <sub>1</sub>          |                 |              |              |              |              |
| Size of openings: $1 + \frac{x'_D}{L_m} \left( \frac{\sqrt{a}}{75L_m} \right)$                 | -0,4                                                |                         |                 |              |              |              |              |
| Combined area of openings to top                                                               | of any down-flooding opening                        | а                       | mm²             |              |              |              |              |
| Longitudinal distance of opening from                                                          | om tip of bow                                       | <i>x</i> ' <sub>D</sub> | m               |              |              |              |              |
| Limiting value of $a = (30L_H)^2$                                                              |                                                     |                         | mm <sup>2</sup> | 0            | 0            | 0            | 0            |
| If $a \ge (30L \text{ H})^2$ , $F_2 = 1,0$                                                     |                                                     |                         |                 |              |              |              |              |
| If $a < (30L H)^2$ , $F_2 =$                                                                   |                                                     | F <sub>2</sub>          |                 |              |              |              |              |
| Size of recesses:                                                                              |                                                     |                         |                 |              |              |              |              |
| Volume of recesses which are not ISO 11812                                                     | self-draining in accordance with                    | V <sub>R</sub>          | m³              |              |              |              |              |
| Is opening not a recess? Is cockpit quickdraining? Is cockpit not quickdraining?               |                                                     |                         |                 |              |              |              |              |
| $k = V_{\rm R} / (L_{\rm H} B_{\rm H} F_{\rm M})$                                              |                                                     | k                       |                 |              |              |              |              |
| If opening is not a recess,<br>If recess is quickdraining,<br>If recess is not quick draining, | $F_3 = 1$<br>$F_3 = 0.7$<br>$F_3 = (0.7 + k^{0.5})$ | F <sub>3</sub>          |                 |              |              |              |              |
| Displacement:                                                                                  |                                                     |                         |                 |              |              |              |              |
| Loaded displacement volume (see                                                                | 3.4.5)                                              | VD                      | m <sup>3</sup>  |              |              |              |              |
| $\boldsymbol{B} = \boldsymbol{B}_{H}$ for monohulls, $\boldsymbol{B}_{WL}$ for mul             | tihulls                                             | В                       | m               |              |              |              |              |
| $F_4 = [(10 V_D)/(L_H B^2)]^{1/3}$                                                             |                                                     | F <sub>4</sub>          |                 |              |              |              |              |
| Flotation:                                                                                     |                                                     |                         |                 |              |              |              |              |
| For boats using option 3 or 4, $F_5 =$                                                         | 0.8                                                 | F.                      |                 |              |              |              |              |
| For all other boats, $F_5 = 7$                                                                 | 1.0                                                 | 15                      |                 |              |              |              |              |
| Required calculation height: = F                                                               | $F_1F_2F_3F_4F_5L_H/15$                             | $h_{D(R)}$              | m               |              |              |              |              |
|                                                                                                | Category A                                          | $h_{\rm D(R)}$          | m               |              |              |              |              |
| Required downfooding height with<br>limits applied<br>(see annex A, Table A.1)                 | Category B                                          | $h_{\rm D(R)}$          | m               |              |              |              |              |
|                                                                                                | Category C                                          | $h_{\rm D(R)}$          | m               |              |              |              |              |
|                                                                                                | Category D                                          | $h_{\rm D(R)}$          | m               |              |              |              |              |
| Measured Downflooding Height                                                                   | :                                                   | h <sub>D</sub>          | m               |              |              |              |              |
|                                                                                                | Design Ca                                           | ategory po              | ossible:        |              |              |              |              |
|                                                                                                |                                                     |                         |                 |              | Lowes        | t of above = |              |



# ISO 12217-1 CALCULATION WORKSHEET - No. 5a

# OFFSET LOAD TEST

### Mass of people used for test

| Name      | Ident. | Mass (kg) |
|-----------|--------|-----------|
| Person 1  | А      |           |
| Person 2  | В      |           |
| Person 3  | С      |           |
| Person 4  | D      |           |
| Person 5  | E      |           |
| Person 6  | F      |           |
| Person 7  | G      |           |
| Person 8  | н      |           |
| Person 9  | I      |           |
| Person 10 | J      |           |

downflooding opening obvious to the crew?

#### Crew Area

Areas included and access limitations (if any):

|              |     |       | Persons |
|--------------|-----|-------|---------|
| Area         | P/S | Incl? | limit   |
| Main Cockpit |     |       |         |
| Aft Cockpit  |     |       |         |
| Fwd Cockpit  |     |       |         |
| Salon        |     |       |         |
| Cabins       |     |       |         |
| Side Decks   |     |       |         |
| Fore Deck    |     |       |         |

### Offset Load Test

| Name      | Ident. | Mass (kg) |
|-----------|--------|-----------|
| Person 11 | к      |           |
| Person 12 | L      |           |
| Person 13 | N      |           |
| Person 14 | М      |           |
| Person 15 | 0      |           |
| Person 16 | Р      |           |
| Person 17 | Q      |           |
| Person 18 | R      |           |
| Person 19 | S      |           |
| Person 20 | Т      |           |

average mass per person: number of persons permitted (through offset load test)

| <b>A</b> = = = | D/C | la al O | Persons |
|----------------|-----|---------|---------|
| Area           | P/3 | INCI    | Πηπ     |
| Cuddy Top      |     |         |         |
| Coachroof Top  |     |         |         |
| Wheelhouse Top |     |         |         |
| Fly Bridge     |     |         |         |
| Swim Platform  |     |         |         |
|                |     |         |         |
|                |     |         |         |

**Sketch**: Indicate possible seating locations along the length of the side to be tested using numbers, so that these may later be used to record the positions that people actually occupy. Locations should not be closer than 0.5 m between centers, and not less than 0.2 m from outboard adge unless on sidedecks less than 0.4 m wide.

1) Note whether it is asymmetric by adding P (port) or S (starboard) to denote the larger side.



# ISO 12217-1 CALCULATION WORKSHEET - No. 5b

# OFFSET-LOAD TEST

# Stability Test - Full Procedure

| Boat being tes     | sted for:                                                    | s | stability                                                     |                                                   | downflooding                   | pleas                          | e mark                                                  |  |                                                  |
|--------------------|--------------------------------------------------------------|---|---------------------------------------------------------------|---------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------|--|--------------------------------------------------|
| L <sub>н</sub> (m) | Min.<br>permitted<br>freeboard<br>margin (m)<br>(see Table 5 | ) | Max. permittee<br>angle (°)<br>$= 11,5 + \frac{(24 - 5)}{52}$ | <b>d heel</b><br>- <i>LH</i> ) <sup>3</sup><br>20 | Intended<br>crew limit<br>(CL) | Intended<br>design<br>category | Mass Test<br>weights per<br>person (kg)<br>(Cat D only) |  | Max. Mass of test<br>weights (kg)<br>(= 98 x CL) |
|                    |                                                              |   |                                                               |                                                   |                                |                                |                                                         |  |                                                  |
| Does boat have     | e a list?                                                    |   |                                                               |                                                   | If "YES" to whi                | ch side?                       |                                                         |  |                                                  |
| Is crew area as    | ymetric?                                                     |   |                                                               |                                                   | If "YES" to whi                | ch side?                       |                                                         |  |                                                  |
| Is downflooding    | asymetric?                                                   |   |                                                               |                                                   | If "YES" to which side?        |                                |                                                         |  |                                                  |
| Boat tested:       |                                                              |   |                                                               |                                                   |                                |                                |                                                         |  |                                                  |

## Test Data:

| Mass<br>ident.                         | Loc             | ation      | Mass<br>(kg) | Total mass<br>(kg) | Lever<br>(m) | Moment<br>(kg-m) | Heel<br>angle (°) | min. fre    | eb'd (m) |
|----------------------------------------|-----------------|------------|--------------|--------------------|--------------|------------------|-------------------|-------------|----------|
|                                        | area            | fore & aft |              |                    |              |                  | F/3               | fwd         | aft      |
| 1                                      |                 |            |              |                    |              |                  |                   |             |          |
| 2                                      |                 |            |              |                    |              |                  |                   |             |          |
| 3                                      |                 |            |              |                    |              |                  |                   |             |          |
| 4                                      |                 |            |              |                    |              |                  |                   |             |          |
| 5                                      |                 |            |              |                    |              |                  |                   |             |          |
| 6                                      |                 |            |              |                    |              |                  |                   |             |          |
| 7                                      |                 |            |              |                    |              |                  |                   |             |          |
| 8                                      |                 |            |              |                    |              |                  |                   |             |          |
| 9                                      |                 |            |              |                    |              |                  |                   |             |          |
| 10                                     |                 |            |              |                    |              |                  |                   |             |          |
| 11                                     |                 |            |              |                    |              |                  |                   |             |          |
| 12                                     |                 |            |              |                    |              |                  |                   |             |          |
| 13                                     |                 |            |              |                    |              |                  |                   |             |          |
| 14                                     |                 |            |              |                    |              |                  |                   |             |          |
| 15                                     |                 |            |              |                    |              |                  |                   |             |          |
| 16                                     |                 |            |              |                    |              |                  |                   |             |          |
| 17                                     |                 |            |              |                    |              |                  |                   |             |          |
| 18                                     |                 |            |              |                    |              |                  |                   |             |          |
| 19                                     |                 |            |              |                    |              |                  |                   |             |          |
| 20                                     |                 |            |              |                    |              |                  |                   |             |          |
|                                        |                 |            |              |                    |              | Σ                | max.<br>angle     | min fre     | eboard   |
| total:                                 |                 |            |              |                    |              |                  |                   |             |          |
| Max. mass of people allowed per above: |                 |            |              | hence CL =         |              | at               |                   | kg / person |          |
| Design                                 | category given: |            |              |                    |              |                  |                   |             |          |
| Safety S                               | Signs Required: | Fig B1:    |              | Fig B2:            |              | Fig B3:          |                   |             |          |



### ISO 12217-1 CALCULATION WORKSHEET No. 5c

# Simplified procedure for OFFSET LOAD TEST

This method may only be applied by calculation; requirements must be fulfilled for both conditions LC1 and LC2

# Preparation (curves of moments in Nm)

| Question                                                                                                                                                                                    | Answer | ref.    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| Mass and the centre-of-gravity of the boat calculated for conditions LC1 and LC2?                                                                                                           |        | B.3.2.2 |
| Curves of righting moments calculated according to annex D?                                                                                                                                 |        | B.3.2.3 |
| Crew heeling moment curve calculated with 961 CL (B <sub>C</sub> /2 - 0,2) cos $\varphi~$ or $~$ where the crew area includes side decks less than 0,4m wide with 480 CL BC cos $\varphi$ ? |        | B.3.2.4 |

### Test data:

| item                                                                                                          | symbol            | unit    | LC1 | LC2 | ref.                 |
|---------------------------------------------------------------------------------------------------------------|-------------------|---------|-----|-----|----------------------|
| Maximum transverse distance between the outboard extremities of<br>any part of the crew area                  | B <sub>C</sub>    | m       |     |     | B.3.2.4 &<br>B.3.1.7 |
| Heel angle at the point of intersection between crew heeling<br>moment curve and the curve of righting moment | фс                | degrees |     |     |                      |
| Maximum permitted heel angle                                                                                  | φ <sub>O(R)</sub> | degrees |     |     | B.3.2.5              |
| Value of downflooding angle                                                                                   | $\phi_{DA}$       | degrees |     |     | B.3.2.5              |
| Value of minimum freeboard margin at $\phi_{C}$                                                               | h <sub>F</sub>    | m       |     |     |                      |
| Minimum required freebord margin                                                                              | $h_{F(R)}$        | m       |     |     | 6.2.2<br>table 4     |
| Righting moment at $\phi_D$                                                                                   |                   | Nm      |     |     |                      |
| Crew heeling moment at $\phi_D$                                                                               |                   | Nm      |     |     |                      |

# **Requirements:**

| Question                                                                          | Ans       | wer | ref. |         |
|-----------------------------------------------------------------------------------|-----------|-----|------|---------|
| Is $\phi_{\rm C} < \phi_{\rm O(R)}$                                               |           |     |      | B.3.2.5 |
| Is $h_F > h_{F(R)}$                                                               |           |     |      | B.3.2.6 |
| Is the righting moment at $\varphi_D$ > crew heeling moment at $\varphi_D?$       |           |     |      | B.3.2.7 |
|                                                                                   |           |     |      |         |
| Offset load test passed, if all questions above are answered with 'yes' (or n.a.) | Pass/Fail |     |      | B.3.2.7 |



# ISO 12217-1 CALCULATION WORKSHEET No. 5d curve of righting moment LC1



ISO 12217-1 CALCULATION WORKSHEET No. 5e curve of righting moment LC2





# ISO 12217-1 CALCULATION WORKSHEET No. 6a RESISTANCE TO WAVES+WIND

| Input data: Design categories A and B only                      |                  |                |                 |                        |       |  |  |  |  |
|-----------------------------------------------------------------|------------------|----------------|-----------------|------------------------|-------|--|--|--|--|
| Item                                                            | Symbol           | Unit           | m <sub>LA</sub> | <i>т</i> <sub>мо</sub> | Ref.  |  |  |  |  |
| Mass in minimum operating condition                             | m <sub>MO</sub>  | kg             |                 |                        | 3.4.3 |  |  |  |  |
| Loaded arrival masss                                            | $m_{LA}$         | kg             |                 |                        | 3.4.6 |  |  |  |  |
| Displacement volume ( = $m_{MO}/1025$ or $m_{LA}/1025$ )        | VD               | m <sup>3</sup> |                 |                        | 3.4.7 |  |  |  |  |
| Windage area (of above water profile of boat)                   | ALV              | m²             |                 |                        | 3.3.7 |  |  |  |  |
| Windage area to be used (not to be < 0.5 $L_{\rm H}B_{\rm H}$ ) | A' <sub>LV</sub> | m²             |                 |                        | 6.3.2 |  |  |  |  |
| Length waterline                                                | L <sub>WL</sub>  | m              |                 |                        | 3.3.2 |  |  |  |  |
| Lever between centroids of above and below water areas          | h                | m              |                 |                        | 6.3.2 |  |  |  |  |
| Draught of canoe body at the mid-point of the waterline length  | T <sub>M</sub>   | m              |                 |                        |       |  |  |  |  |
| Downflooding angle                                              | Ø <sub>DA</sub>  | degrees        |                 |                        | 3.2.2 |  |  |  |  |
| Calculation windspeed                                           | v <sub>w</sub>   | m/s            |                 |                        | 3.5.1 |  |  |  |  |



# ISO 12217-1 CALCULATION WORKSHEET No. 6b RESISTANCE TO WAVES+WIND

# Rolling in beam waves and wind:

# Design categories A and B only

| Item                                                                            | Symbol          | Unit    | m <sub>LA</sub> | т <sub>мо</sub> | Ref.   |
|---------------------------------------------------------------------------------|-----------------|---------|-----------------|-----------------|--------|
| Second wind heel equilibrium angle                                              |                 | degrees |                 |                 | Fig. 6 |
| Least value of $ø_{DA}$ , 50 <sup>0</sup> or second wind heel equilibrium angle | Ø <sub>A2</sub> | degrees |                 |                 | Fig. 6 |
| Wind heeling moment (1) = 0.53 $A'_{LV} h v_W^2$                                | M <sub>W1</sub> | Num     |                 |                 |        |
| Wind heeling moment (2) = 0.30 $A'_{LV} (A'_{LV} / L_{WL} + T_M) v_W^2$         | M <sub>W2</sub> | N-M     |                 |                 | 6.3.2  |
| Assumed roll angle Category $A = (25+20/V_D)$                                   | Ø.a             |         |                 |                 | 630    |
| Category $B = (20+20/V_D)$                                                      | ØR              | degrees |                 |                 | 0.3.2  |
| Area 1 (see fig. 6)                                                             | A 1             | any     |                 |                 | Fig. 6 |
| Area 2 (see fig. 6)                                                             | A <sub>2</sub>  | any     |                 |                 | Fig. 6 |
| Ratio of A <sub>2</sub> /A <sub>1</sub>                                         |                 |         |                 |                 | 6.3.2  |
| Is ratio of $A_2/A_1$ greater than or equal to 1.0?                             | YES             | /NO     |                 |                 | 6.3.2  |

### Resistance to waves:

| Item                                                                                  | Symbol             | Unit    | m <sub>LA</sub> | m <sub>MO</sub> | Ref.    |
|---------------------------------------------------------------------------------------|--------------------|---------|-----------------|-----------------|---------|
| Least value of $ø_{DA}$ , 50 <sup>0</sup> or second wind heel equilibrium angle       |                    | degrees |                 |                 | 6.3.3   |
| Heel angle when righting moment is maximum                                            | Ø <sub>GZMax</sub> | degrees |                 |                 | 6.3.3   |
| If ø <sub>GZMax</sub> is greater than or equal to 30°                                 |                    |         |                 |                 |         |
| Max value of righting moment @ 30° heel?                                              | RM <sub>30</sub>   | kN m    |                 |                 | 6.3.3a) |
| Required value of righting moment                                                     |                    | kN m    |                 |                 | 6.3.3a) |
| Is $RM_{30}$ greater than or equal to required max value?                             |                    |         |                 |                 | 6.3.3b) |
| Value of righting lever at $30^{\circ} = RM_{30}/(9.806*mass)$                        | GZ <sub>30</sub>   | m       |                 |                 | 3.5.10  |
| Required value of righting lever at 30 <sup>0</sup>                                   |                    | m       |                 |                 | 6.3.3a) |
| Is $GZ_{30}$ greater than or equal to required max value?                             |                    |         |                 |                 | 6.3.3a) |
| IF ø <sub>GZMax</sub> is less than 30 <sup>°</sup>                                    |                    |         |                 |                 | 6 3 3b) |
| Max value of righting moment                                                          | RM <sub>MAX</sub>  | kN m    |                 |                 | 0.3.30) |
| Required value of $RM_{MAX}$ (A = 750/ø <sub>GZMax</sub> , B = 210/ø <sub>GZMax</sub> |                    | kN m    |                 |                 | 6.3.3b) |
| Is RM <sub>MAX</sub> greater than or equal to required max value?                     |                    |         |                 |                 | 6.3.3b) |
| Max value of righting lever = RM <sub>MAX</sub> /(9.806*mass)                         | GZ <sub>Max</sub>  | m       |                 |                 | 3.5.10  |
| Required max value of righting lever = 6/ø <sub>GZMax</sub>                           |                    | m       |                 |                 | 6.3.3b) |
| Is GZ <sub>MAX</sub> greater than or equal to the required max value? PASS / FAIL     | Ĺ                  |         |                 |                 | 6.3.3b) |
|                                                                                       |                    |         |                 |                 |         |
| Design Category given: NB: Boat must have ratio of A2/A1 greater                      |                    |         |                 |                 |         |
| than or equal to 1.0, and also get PASS twice under resistance to waves               | 5.                 |         |                 |                 |         |

than or equal to 1.0, and also get PASS twice under resistance to waves.



ISO 12217-1 CALCULATION WORKSHEET No. 6c curve of righting moment m<sub>LA</sub>

insert curve of righting moment in 5° steps in one of following units:



| -10 |  |  |
|-----|--|--|
| -5  |  |  |
| 0   |  |  |
| 5   |  |  |
| 10  |  |  |
| 15  |  |  |
| 20  |  |  |
| 25  |  |  |
| 30  |  |  |
| 35  |  |  |
| 40  |  |  |
| 45  |  |  |
| 50  |  |  |
| 55  |  |  |
| 60  |  |  |
| 65  |  |  |
| 70  |  |  |





#### **INTERNATIONAL MARINE CERTIFICATION INSTITUTE** INTERNATIONAL NON-PROFIT ASSOCIATION Heeling arm curve m<sub>LA</sub> 1,000 0,900 0,800 0,700 0,600 0,500 0,400 Gz [m] 0,300 0,200 0,100 0,000 -25 0 5 10 15 20 60 65 70 -20 -15 -10 -5 25 30 35 40 45 50 55 heel angle [°] ——Arm [m]

# Checklist ISO 12217-1:2015 en161206



# ISO 12217-1 CALCULATION WORKSHEET No. 6d curve of righting moment $m_{MO}$

| hoson unit                                          | Nm                                                  | kg m                      | m                           |                                                              |                                     |
|-----------------------------------------------------|-----------------------------------------------------|---------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------|
| nosen unit                                          |                                                     |                           |                             |                                                              |                                     |
| hose of $M_W$                                       |                                                     |                           |                             |                                                              |                                     |
| heeling<br>angle[°]                                 | insert Heeling<br>Arm/Moment<br>[Nm, kg m, m]       | Heeling<br>Moment<br>[Nm] | Heeling<br>Moment<br>[kg m] | Arm Gz<br>[m]                                                | Wind Heeling<br>moment curve<br>[m] |
| -25                                                 |                                                     |                           |                             |                                                              |                                     |
| -20                                                 |                                                     |                           |                             |                                                              |                                     |
| -15                                                 |                                                     |                           |                             |                                                              |                                     |
| -10                                                 |                                                     |                           |                             |                                                              |                                     |
|                                                     |                                                     |                           |                             |                                                              |                                     |
| 5                                                   |                                                     |                           |                             |                                                              |                                     |
| 10                                                  |                                                     |                           |                             |                                                              |                                     |
| 15                                                  |                                                     |                           |                             |                                                              |                                     |
| 20                                                  |                                                     |                           |                             |                                                              |                                     |
| 25                                                  |                                                     |                           |                             |                                                              |                                     |
| 30                                                  |                                                     |                           |                             |                                                              |                                     |
| 40                                                  |                                                     |                           |                             |                                                              |                                     |
| 45                                                  |                                                     |                           |                             |                                                              |                                     |
| 50                                                  |                                                     |                           |                             |                                                              |                                     |
| 55                                                  |                                                     |                           |                             |                                                              |                                     |
| 60                                                  |                                                     |                           |                             |                                                              |                                     |
| 65                                                  |                                                     |                           |                             |                                                              |                                     |
| 70                                                  |                                                     |                           |                             |                                                              |                                     |
| A1 from<br>A2 from                                  | area A1 and A2<br>heel degrees<br>point of intersec | to<br>to<br>to            | heel degrees                | below M <sub>W</sub><br>above M <sub>W</sub><br>rve and wind | d heeling moment (                  |
|                                                     | Φ <sub>w</sub>                                      | -                         | -                           |                                                              | -                                   |
|                                                     | #NV                                                 |                           |                             |                                                              |                                     |
|                                                     |                                                     | Nm                        |                             |                                                              |                                     |
| ٨w                                                  |                                                     | kg m                      |                             |                                                              |                                     |
| Лw<br>Лw                                            |                                                     |                           |                             |                                                              |                                     |
| Лw<br>Лw<br>Лw                                      |                                                     | m                         |                             |                                                              |                                     |
| Лw<br>Лw<br>Лw<br>D <sub>w</sub>                    |                                                     | m<br>degrees              |                             |                                                              |                                     |
| Mw<br>Mw<br>Mw<br>D <sub>W</sub><br>D <sub>A2</sub> |                                                     | m<br>degrees<br>degrees   |                             |                                                              |                                     |







# ISO 12217-1:2015 CALCULATION WORKSHEET No.7

### HEEL DUE TO WIND ACTION

### NB: This sheet is to be completed for both Minimum Operating and Loaded arrival condition

| Initial check:                                            |                 |      | Design Categories C and D only |                 |       |  |  |  |  |
|-----------------------------------------------------------|-----------------|------|--------------------------------|-----------------|-------|--|--|--|--|
| ltem                                                      | Symbol          | Unit | m <sub>LA</sub>                | т <sub>мо</sub> | Ref.  |  |  |  |  |
| Windage area (NOT subject to minimum of 0.5 $L_HB_H$ )    | A <sub>LV</sub> | m²   |                                |                 | 3.3.7 |  |  |  |  |
| Length of Hull                                            | L <sub>H</sub>  | m    |                                |                 | 3.3.2 |  |  |  |  |
| Beam of hull                                              | B <sub>H</sub>  | m    |                                |                 | 3.3.3 |  |  |  |  |
| Ratio $A_{LV}/(L_H B_H)$ at mMO                           |                 |      |                                |                 |       |  |  |  |  |
| Is ratio $A_{LV}/(L_H B_H)$ equal to or greater than 0.5? |                 |      |                                |                 | 6.4   |  |  |  |  |
| If answer is NO, no other assessment is required.         |                 |      |                                |                 |       |  |  |  |  |

# Calculation of wind heeling moment:

| Item                                                                         | Symbol          | Unit | m <sub>LA</sub> | т <sub>мо</sub> | Ref.  |
|------------------------------------------------------------------------------|-----------------|------|-----------------|-----------------|-------|
| Length of waterline                                                          | L <sub>WL</sub> | m    |                 |                 | 3.3.2 |
| Draught at the mid-point of $L_{WL}$                                         | Τ <sub>M</sub>  | m    |                 |                 | 6.3.2 |
| Lever between centroids of above and below water areas                       | h               | m    |                 |                 | 6.3.2 |
| Calculation wind speed                                                       | V <sub>W</sub>  | m/s  |                 |                 | 3.5.1 |
| Wind heeling moment $M_{W1} = 0.53 \text{ A}_{LV} \text{ h} \text{ v}_{W}^2$ | Mw              | Nm   |                 |                 | 6.4.2 |
| Wind heeling moment $M_{W2} = 0.3 A_{LV} (A_{LV} / L_{WL} + T_M) v_W^2$      | M <sub>W</sub>  | Nm   |                 |                 | 6.4.2 |

# Angle of heel due to wind:

| ltem                                                                                                                  | Symbol            | Unit    | m <sub>LA</sub> | т <sub>мо</sub> | Ref.  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------------|-----------------|-------|
| FROM RIGHTING MOMENT CURVE:<br>angle of heel due to wind                                                              | ØW                | degrees |                 |                 | 6.4.3 |
| OR ALTERNATIVELY:<br>wind heeling moment M <sub>w</sub> divided by 9.806                                              |                   | kg.m    |                 |                 |       |
| Angle of heel due to wind when moment above applied                                                                   | Ø <sub>W</sub>    | degrees |                 |                 | 6.4.3 |
| Maximum permitted angle of heel during offset load test (from worksheet 5b)                                           | Ø <sub>O(R)</sub> | degrees |                 |                 | 6.2.3 |
| Downflooding angle                                                                                                    | Ø <sub>DA</sub>   | degrees |                 |                 | 3.2.2 |
| Maximum permitted angle of heel due to wind = lesser of $0.7 \varnothing_{O(\mathcal{R})}$ and $0.7 \varnothing_{DA}$ |                   | degrees |                 |                 | 6-4.3 |
| Is angle of heel due to wind less than permitted value?                                                               |                   |         |                 |                 | 6.4.3 |
| Design Category possible on wind heeling =                                                                            |                   |         |                 |                 |       |



### ISO 12217-1:2015 CALCULATION WORKSHEET No. 8

#### NB: This sheet is to be completed for the Loaded Arrival Condition.

| ltem                                                                                           |                 | Unit           |                | Value    |          | Ref.     |
|------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|----------|----------|----------|
| itenii                                                                                         | Symbol          | UIII           |                | Recess 1 | Recess 2 | Kei.     |
| Angle of vanishing stability > 90° ?                                                           |                 | YES/N          | 10             |          |          | 6.5.1a)  |
| Depth recess < 3% max breadth of the recess over >35% of                                       |                 | VES/N          |                |          |          | 651b)    |
| periphery?                                                                                     |                 | 120/1          | 0              |          |          | 0.5.15)  |
| Bulwark height < B <sub>H</sub> /8                                                             |                 |                | 0              |          |          | 6.5.1.0) |
| and has ≥ 5% drainage area in the lowest 25%?                                                  |                 | TEO/I          | 10             |          |          | 6.5.1C)  |
| Drainage area per side (m <sup>2</sup> ) divided by recess volume (m <sup>3</sup> )            |                 |                |                |          |          | 6.5.1d)  |
| Height position of drainage area                                                               |                 |                |                |          |          | 6 5 1 4) |
| (lowest 25% / lowest 50% / full depth)                                                         |                 |                |                |          |          | 6.5. IU) |
| Drainage area meets requirements 1) and 2)?                                                    |                 | YES/N          | 10             |          |          | 6.5.1d)  |
| Recess exempt from size limit?                                                                 |                 | YES/N          | 10             |          |          |          |
|                                                                                                |                 | •              |                |          |          |          |
| SIMPLIFIED METHOD: Use 1), 2) or 3) below.                                                     |                 |                |                | Zone 1   | Zone 2   |          |
| Requirement: from results below, design category possible =                                    |                 |                |                |          |          | 6.5.2.1  |
| Average freeboard to loaded waterline at aft end of recess                                     | FA              | m              |                |          |          | 6.5.2.1  |
| Average freeboard to loaded waterline at sides of recess                                       | Fs              | m              |                |          |          | 6.5.2.1  |
| Average freeboard to loaded waterline at forward end of recess                                 | FF              | m              |                |          |          | 6.5.2.1  |
| Waterline length at mLA                                                                        | L <sub>WL</sub> | m              |                |          |          |          |
| Waterline breadth at mLA                                                                       | B <sub>WI</sub> | m              |                |          |          |          |
| Average freeboard to recess periphery                                                          |                 |                |                |          |          |          |
| $= (F_{A} + 2F_{S} + F_{F})/4$                                                                 | FR              | m              |                |          |          | 6.5.2.1  |
| Category A permitted percentage loss in metacentric height $102500 \times SMA_{RECESS}$        |                 |                |                |          |          |          |
| $(GM_{\rm T}) = 250 F_{\rm R}/L_{\rm H}$                                                       |                 |                |                |          |          | 6.5.2.1  |
| Category B permitted percentage loss in metacentric height                                     |                 |                |                |          |          |          |
| $(GM_{\rm T}) = 550 F_{\rm R} / L_{\rm H}$                                                     |                 |                |                |          |          | 6.5.2.1  |
| Category C permitted percentage loss in metacentric height                                     |                 |                |                |          |          |          |
| $(GM_{\rm T}) = 1200F_{\rm R}/L_{\rm H}$ $\left(\frac{245\times SMA_{\rm RECENS}}{SMA}\right)$ |                 |                |                |          |          | 6.5.2.1  |
|                                                                                                |                 |                |                | 1        |          |          |
| SIMPLIFIED METHOD: Use 1), 2) or 3) below.                                                     |                 |                |                | Zone 1   | Zone 2   |          |
| 1) Loss of GM <sub>T</sub> used?                                                               |                 |                |                | 1        |          | 6.5.2.2  |
| Second moment of area of free-surface of recess                                                | SMA             | RECESS         | m <sup>4</sup> |          |          | 6.5.2.2  |
| Metacentric height of boat at $m_{1A}$                                                         | G               | Μ <sub>T</sub> | m              |          |          | 6.5.2.2  |
| Calculated percentage loss in metacentric height $\overline{(L_n \times B_n^*)}$               |                 |                |                |          |          |          |
| $(GM_{T}) =$                                                                                   |                 |                |                |          |          | 6.5.2.2  |
|                                                                                                |                 |                |                |          |          |          |
| 2) Second moment of areas used?                                                                |                 |                |                |          |          | 6.5.2.3  |
| Second moment of area of free-surface of recess                                                | SMA             | RECESS         | m <sup>4</sup> |          |          | 6.5.2.3  |
| Second moment of area of waterplane of boat at $m_{1A}$ SM                                     |                 |                |                |          |          | 6.5.2.3  |
| Calculated percentage loss in metacentric height                                               |                 |                |                |          |          |          |
| $(GM_{T}) =$                                                                                   |                 |                |                |          | 6.5.2.3  |          |
|                                                                                                |                 |                |                |          |          |          |
| 3) Recess dimensions used?                                                                     |                 |                |                |          |          | 6.5.2.4  |
| Maximum length of recess at the retention level                                                |                 |                |                |          |          |          |
| (see 3.5.11)                                                                                   |                 | l              | m              |          |          | 6.5.2.4  |

 $(GM_T) =$ 

b

m

6.5.2.4

6.5.2.4

Maximum breadth of recess at the retention level

Calculated percentage loss in metacentric height

(see 3.5.11)



| DIRECT CALCULATION METHOD used?                                        |             | 6.5.3   |  |         |
|------------------------------------------------------------------------|-------------|---------|--|---------|
| Percentage full of water = $60 - 240 F/L_{H}$                          |             | 6.5.3a) |  |         |
| Wind heeling moment for intended design category                       | $M_{\rm W}$ | N∙m     |  | 6.5.3b) |
| Crew heeling moment at fGZmax                                          |             | N∙m     |  | 6.5.3c) |
| Maximum swamped righting moment up to least of fD fV or 50°            |             | N∙m     |  | 6.5.3d) |
| Required margin of righting moment over heeling moment                 |             | N∙m     |  | 6.5.3d) |
| Actual margin of righting moment over heeling moment                   |             | N∙m     |  | 6.5.3d) |
| Design category possible                                               |             | 6.5.3d) |  |         |
| Design category achieved                                               |             |         |  |         |
| Design category C boats using option 6                                 |             |         |  |         |
| Recess entirely contained within LH/2 of the bow ?                     |             |         |  | 6.5.4   |
| Volume to retention level (see 3.5.9) larger than $(L_H B_H F_M)/40$ ? |             | 6.5.4   |  |         |
| If both questions are answered with 'yes' check requirements below:    |             |         |  |         |
| Recess is quickdraining recess either overboard or in the bilge?       |             | 6.5.4   |  |         |
| Design category possible                                               |             | 6.5.4   |  |         |



# ISO 12217-1 CALCULATION WORKSHEET No.10 FLOTATION TEST

Annexes E and F

assumed Crew Limit (CL) =

### Preparation

| Item                                                                     | Unit | Response | Ref.                  |
|--------------------------------------------------------------------------|------|----------|-----------------------|
| Mass equal to 25% of dry stores and equipment added?                     |      |          | F.2 a)                |
| Inboard or outboard engine fitted?                                       |      |          |                       |
| If inboard fitted, correct engine replacement mass fitted?               |      |          | F.2 d)                |
| Assumed outboard engine power?                                           | Kw   |          | F.2 c)                |
| Mass fitted to represent outboard engine, controls, and battery.         | kg   |          | Tables F.1 and<br>F.2 |
| Portable fuel tanks removed and/or fixed tanks are filled?               |      |          | F.2 f)                |
| Cockpit drains open and drain plugs are fitted?                          |      |          | F.2 g)                |
| Void compartments which are not air tanks are opened?                    |      |          | F.2 i)                |
| Number of integral air tanks required to be open?                        |      |          | Table F.3             |
| Type of test weights used: lead, 65/35 brass, steel, cast iron, aluminum |      |          | F.3.2                 |
| Material factor d                                                        |      |          | Table F.4             |

# Swamped stability test:

| Item                                                          | Unit | Response | Ref.          |
|---------------------------------------------------------------|------|----------|---------------|
| Dry mass of test weights = $6dCL$ but $\ge 15d$               | kg   |          | Table F.6     |
| Test weight hung from gunwale each of four positions in turn? |      |          | F.3.1         |
| 5 min after swamping, boat heels less than 45 <sup>0</sup>    |      |          | F.3.4 + F.3.5 |

### Swamped buoyancy test:

| ltem                                                                                               | Unit | Response | Ref.      |
|----------------------------------------------------------------------------------------------------|------|----------|-----------|
| Load test:                                                                                         |      |          | F.4       |
| DesignCategory assessed                                                                            |      |          |           |
| Dry mass of test weights used                                                                      | kg   |          | Table F.5 |
| 5 min after swamping, boat floats approximately level with more than 2/3 of periphery above water? |      |          | F.4.3     |

### Swamped buoyancy test:

| Item                                                 | Response | Ref.      |
|------------------------------------------------------|----------|-----------|
| All flotation elements comply with all requiremnets? |          | Table G.1 |

Design Category given: NB: boat must obtain PASS three times in above tables



# ISO 12217-1 CALCULATION WORKSHEET No. 11 DETECTION + REMOVAL OF WATER

|                                                     | ltem                          | response           | Ref.  |  |  |  |
|-----------------------------------------------------|-------------------------------|--------------------|-------|--|--|--|
| The internal arrangeme<br>it can be bailed rapidly, |                               | 6.9.1              |       |  |  |  |
| Is boat provided with a                             |                               | 6.9.2              |       |  |  |  |
| Table 2 option used for                             |                               | 6.9.3; 5.4 table 2 |       |  |  |  |
| Can water in boat be de                             |                               | 6.9.3              |       |  |  |  |
| Methods used:                                       | direct visual inspection      |                    | 6.9.3 |  |  |  |
|                                                     | transparent inspection panels |                    | 6.9.3 |  |  |  |
|                                                     |                               | 6.9.3              |       |  |  |  |
| in                                                  |                               | 6.9.3              |       |  |  |  |
| other means (specify):                              |                               |                    |       |  |  |  |



### ISO 12217-1:2015 CALCULATION WORKSHEET No.12

| Design Description:       |             |       |  |
|---------------------------|-------------|-------|--|
| Design Category intended: | Crew Limit: | Date: |  |
|                           | -           |       |  |

SUMMARY

| Sheet | Item                                                            | Symbol          | Uni              | t               | Value           |           |
|-------|-----------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|-----------|
|       | Length of hull: (as in ISO 8666)                                | L <sub>H</sub>  | m                |                 |                 |           |
|       | Length of waterline in loaded arrival condition                 | L <sub>WL</sub> | m                |                 |                 |           |
|       | Mass:                                                           |                 |                  |                 |                 |           |
| 1     | Empty craft mass                                                |                 | m <sub>EC</sub>  | kg              |                 |           |
|       | Maximum load                                                    |                 | $m_{L}$          | kg              |                 |           |
|       | Light craft condition mass                                      |                 | $m_{ m LC}$      | kg              |                 |           |
|       | Maximum Loaded condition mass = $m_{LC} + m_{ML}$               |                 | m <sub>LDC</sub> | kg              |                 |           |
|       | Loaded arival condition mass                                    |                 | $m_{\rm LA}$     | kg              |                 |           |
|       | Minimum operating condition mass                                |                 | m <sub>MO</sub>  | kg              |                 |           |
| 1     | Is boat sail or non-sail?                                       |                 | SAIL/NO          | N-SAIL          |                 |           |
| 2     | Option selected:                                                |                 |                  |                 |                 |           |
| 3     | Downflooding openings:                                          | A               | re all requirem  | ents met?       |                 |           |
| 3     | <b>Downflooding angle:</b> (Categories A and B only)            | degrees         | Required         | m <sub>MO</sub> | m <sub>LA</sub> | Pass/Fail |
| -     |                                                                 | degrees         | > 0              |                 |                 |           |
|       | Downflooding height: Worksheet                                  | employed for b  | asic height      |                 |                 |           |
|       | basic requirement                                               | m               | #NV              |                 |                 |           |
| 3&4   | reduced height for small openings (only using figures)          | m               | #NV              |                 |                 |           |
|       | reduced height at outboard (options 3, 4, 6 only)               | #NV             |                  |                 |                 |           |
|       | increased height at bow (options 3, 4, 6 only)                  | m               | #NV              |                 |                 |           |
|       | Off-set load test:                                              | Unit            | Required         | Actual          |                 | Pass/Fail |
|       | Testing for least stability: maximum heel angle                 | degrees         | < 0,00           |                 |                 |           |
| 5     | Testing for least freeboard: heeled freeboard margin            | m               | > 0,00           |                 |                 |           |
|       | Maximum crew limit for stability                                |                 |                  |                 |                 |           |
|       | Maximum crew limit for freeboard                                |                 |                  |                 |                 |           |
|       | Resistance to waves and wind: (options 1, 3) at mLA and m       | мо              |                  |                 |                 |           |
|       | <b>Rolling in beam waves and wind:</b> ratio $A_2/A_1$          | -               | <u>&gt;</u> 1.0  |                 |                 |           |
| 6     | Resistance to waves: value of $ø_{GZMax}$                       | degrees         |                  |                 |                 |           |
|       | value of $RM_{30}$ or $RM_{MAX}$                                | kNm             | 7                |                 |                 |           |
|       | value of GZ <sub>30</sub> or GZ <sub>MAX</sub>                  | m               | 0,2              |                 |                 |           |
|       | Heel due to wind: (options 2.4.5.6) at $m_{LA}$ and at $m_{MO}$ |                 |                  |                 |                 |           |
| 7     | at $m_{\text{MLA}}$ : heel angle due to wind                    | degrees         | <                |                 |                 |           |
|       | if required at $m_{\rm MO}$ : heel angle due to wind            | degrees         | <                |                 |                 |           |



|                                                                                                                |                                                                         |               |                                |                  |                  |                        | - |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------|--------------------------------|------------------|------------------|------------------------|---|
|                                                                                                                | Recess size: (options                                                   | 1 and 2 ex    | cept category D)               |                  |                  |                        |   |
|                                                                                                                | Simplified method: ma                                                   | x reduction   | in GM <sub>T</sub>             | %                | ≤                |                        |   |
| 8                                                                                                              | Direct calculation: mai<br>moment                                       | rgin righting | moment over heeling            | N m              | 2                |                        |   |
|                                                                                                                | For category C boats are fulfilled?                                     | using optior  | n 6; drainage requirements f   | or recesses enti | rely contained v | vithin LH/2 of the bow |   |
|                                                                                                                | Habitable Multihulls                                                    | Is Catego     | ry C boat vulnerable to invers | sion?            |                  | Yes / No               |   |
| 9                                                                                                              | Complies with Part 2 of                                                 | clause 7.12   | for inverted buoyancy?         |                  |                  | Pass / Fail            |   |
|                                                                                                                | Complies with Part 2 of                                                 | Pass / Fail   |                                |                  |                  |                        |   |
| 9                                                                                                              | Motor Sailers<br>Complies with require                                  | Pass / Fail   |                                |                  |                  |                        |   |
|                                                                                                                | Flotation test: (option                                                 | Yes / No      |                                |                  |                  |                        |   |
| 10                                                                                                             | Swamped stability:                                                      | Pass / Fail   |                                |                  |                  |                        |   |
| 10                                                                                                             | Load test: 5 min afte                                                   | Pass / Fail   |                                |                  |                  |                        |   |
|                                                                                                                | Flotation elements:                                                     | Pass / Fail   |                                |                  |                  |                        |   |
| 11                                                                                                             | 1 Detection & removal of water are all requirements satisfied? Yes / No |               |                                |                  |                  |                        |   |
| <b>NB:</b> Boat must pass all requirements applicable to selected option to be given intended Design Category. |                                                                         |               |                                |                  |                  |                        |   |
| Design                                                                                                         | Design Category given: Assessed by:                                     |               |                                |                  |                  |                        |   |